ELSEVIER

Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

Research paper

Tuning the porosity of TiO₂ nanoparticles via surfactant-templated aerosol process for enhanced photocatalytic reactivity

Ji Hye Ku^a, Ho Sung Kim^a, Myung Hoon Cho^b, Ji Young Ahn^b, Soo Hyung Kim^{a,b,c,*}

- ^a Department of Nano Fusion Technology, College of Nanoscience and Nanotechnology, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
- b Research Center for Energy Convergence Technology, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
- ^c Department of Nanoenergy Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea

HIGHLIGHTS

- TiO₂ nanoparticles (NPs) with intra-particle porosity are fabricated using surfactant-tempted aerosol process.
- Surfactant plays the role as a templating medium to support pore structures inside TiO₂ matrix.
- TiO₂ NPs with highly porous structures enhance the photodegradation of methylene blue.

ARTICLE INFO

Keywords: Aerosol process Porous TiO₂ nanoparticles Photocatalysts Surfactants Specific surface area

ABSTRACT

In this work, we fabricated crystallite solid and porous TiO_2 nanoparticles (NPs) using a surfactant-templated aerosol process. Specifically, Brij-58 surfactant was employed as a template in TiO_2 matrix. The porosity of TiO_2 NPs was controlled by varying the amount of Brij-58. The effect of TiO_2 porosity on the photocatalytic reactivity was systematically examined. As a result, the highly porous TiO_2 NPs exhibited much better photocatalytic reactivity than the low porosity TiO_2 NPs. This suggests that the particle size, crystallite structure, and specific surface area play an important role in enhancing the photocatalytic reactivity of the TiO_2 NPs.

1. Introduction

Among many semiconducting metal oxides, TiO_2 is known as a highly-valued material suitable for industrial applications, due to its many advantages such as relatively high chemical stability, nontoxicity, relatively low manufacturing cost, and highly oxidizing reactivity [1–8]. Since TiO_2 has a band gap of 3.0–3.2 eV, it can effectively absorb ultraviolet (UV) light. The mechanism of photocatalytic process of TiO_2 particles is generally known that an electron from the valence band (VB) promotes to the conduction band (CB), leaving an electron deficiency (h+) in the VB and an excess of negative charge (e-) in the CB, which are oxidizing and reducing equivalents and can participate in redox reactions when the light irradiates on the TiO_2 catalyst (Fig. 1). Moreover, TiO_2 nanoparticles (NPs) are known to have a superior photocatalytic reactivity compared to traditional bulk TiO_2 . Thus, various approaches have been developed towards the synthesis of TiO_2 NPs. These include methods such as sol-gel [9], solvothermal [10],

hydrothermal [11], direct oxidation [12], chemical vapor deposition (CVD) [13], electrospinning deposition [14–16], microwave [17], and spray pyrolysis [18]. From the aforementioned approaches, the spray pyrolysis method displays many advantages in that it can continuously and cost-effectively generate ${\rm TiO_2}$ NPs with control on the structure [18–22].

The photocatalytic reactivity of ${\rm TiO_2}$ NPs is strongly dependent on their structural characteristics as well as the synthetic methods employed [23]. Recently, mesoporous ${\rm TiO_2}$ NPs with a relatively high specific surface area have been synthesized in a way that their photocatalytic performance is enhanced [24–26]. Mesoporous ${\rm TiO_2}$ NPs have a high photocatalytic reactivity due to their porous structure, which can lead to an increase in the interfacial contact area between ${\rm TiO_2}$ and pollutants [27]. In addition, these NPs are particularly important because of their good stability and ability to enhance light harvesting [28–31]. There have been numerous approaches that have been developed to synthesize the important NPs. One way to effectively create

E-mail address: sookim@pusan.ac.kr (S.H. Kim).

^{*} Corresponding author at: Department of Nanoenergy Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea.

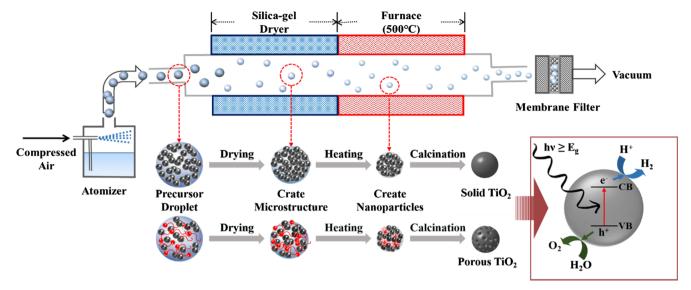


Fig. 1. Schematic of aerosol synthesis and photocatalytic process of surfactant-templated solid and porous TiO2 particles.

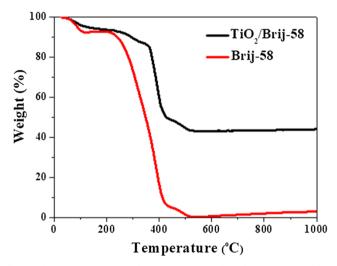


Fig. 2. Thermogravimetric analysis of Brij-58 (red) and Brij-58/TiO $_2$ (black) samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

pore structures inside the ${\rm TiO_2}$ matrix is to use a surfactant as templating medium [32,33]. After the surfactant templates are removed, the porosity of the resulting ${\rm TiO_2}$ NPs is strongly dependent on the nature and initial concentration of the surfactant in the given synthetic method [32–37]. Several research groups reported the successful fabrication of mesoporous ${\rm TiO_2}$ NPs, but they did not conduct a systematic exploration of the control and effect that ${\rm TiO_2}$ porosity has on the photocatalytic performance.

In this work, we systematically investigated the use of Brij-58 as a nonionic surfactant template and its effect on the formation of porous structures inside the TiO_2 NPs. Both solid and porous TiO_2 NPs were fabricated using different mixing molar ratios of TiO_2 and Brij-58 in the aerosol process. The synthesized TiO_2 NPs were then systematically examined using various analytical techniques, including scanning electron microscope (SEM), transmission electron microscope (TEM), and nitrogen gas adsorption to identify the formation of porous structures in the TiO_2 matrix. Furthermore, the photocatalytic reactivity of

the ${\rm TiO_2}$ NPs was examined by testing the photodegradation of methylene blue (MB) solution in the presence of these NPs under different UV light irradiation durations.

2. Experimental

2.1. Fabrication of TiO2 NPs

A TiO2 precursor solution was prepared by mixing titanium butoxide (tetra-n-butyl orthotitanate [TNBT ($C_{16}H_{40}O_4Ti$); Sigma-Aldrich, St. Louis, MO, USA], deionized water, and ethanol. TNBT (17.15 ml) was initially dissolved in ethanol (72.85 ml). Deionized water (90 ml) was then gradually added to the solution under continuous stirring, which resulted in the rapid precipitation of TiO2. In order to fabricate porous TiO₂ NPs, nonionic surfactant [Brij-58; CH₃(CH₂)₁₅-(OCH₂CH₂)₂₀-OH; Sigma-Aldrich, St. Louis, MO, USA] was used as an organic template and added in the TiO2 solution. The initial concentration of Brij-58 was varied from 0.0 to 0.1 M. HCl was then added to adjust the pH of TiO₂ solution. The final molar ratio was determined to be TNBT: H_2O :HCl:Brij-58 = 1:67:0.004:(0.0-0.1). The aforementioned sol-gel-chemistry-generated TiO2 precursor solution was first aerosolized using a standard atomizer with compressed air at a pressure of $35 \, \text{kN m}^{-2}$ as shown in Fig. 1. The aerosol droplets were then rapidly solidified due to the solvent evaporation that occurred when they passed through a silica-gel dryer. The dried aerosol particles were then continuously passed through a quartz tube (2.54 cm in diameter × 40 cm in heating length) enclosed with a heating reactor at ~500 °C. Finally, the TiO₂ particles were collected on a membrane filter with an average pore size of $\sim 200 \, \text{nm}$, and then additionally heated at \sim 550 °C for 1 h in a convection oven to thermally remove the Brij-58 surfactants and any residues.

2.2. Characterization of TiO2 NPs

XRD (Empyrean series 2, PANalytical, Almero, Netherlands) with Cu K α radiation was used to examine the crystallinity of the TiO₂ NPs fabricated in this study. The size and morphology of the resulting solid and porous TiO₂ NPs were measured using a SEM (S-4200, Hitachi, Tokyo, Japan) operated at \sim 15 kV and TEM (JEM 2100F, JEOL, Tokyo,

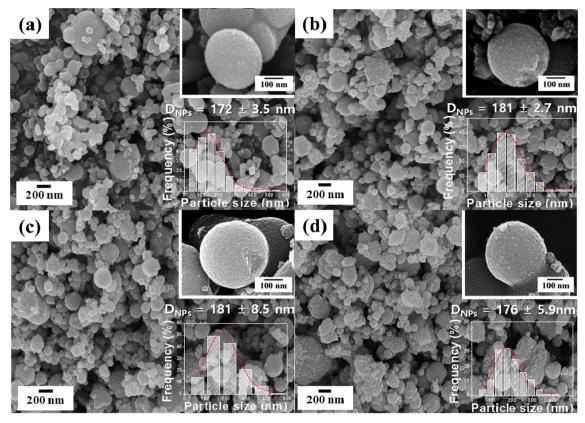


Fig. 3. FE-SEM images of TiO_2 NPs made by various mixing ratios: (a) TNBT:Brij-58 = 1:0.00, (b) TNBT:Brij-58 = 1:0.01, (c) TNBT:Brij-58 = 1:0.05, and (d) TNBT:Brij-58 = 1:0.10. (Insets are HR-SEM images of the TiO_2 NPs. D_{NPs} represents the average size of the TiO_2 NPs determined from the particle size distribution.)

Japan) operated at $\sim\!200\,kV$. The nitrogen adsorption and desorption isotherms were measured using a surface area and porosimetry analyzer (Micrometrics, ASAP 2020, USA). The pore volume was measured at the single point P/P $_0=0.29$, where P $_0$ represents the equilibrium pressure as the vapor pressure on the sample and P the saturation pressure as the vapor pressure on the liquid.

2.3. Evaluation of the photocatalytic reactivity of TiO2 NPs

Methylene blue (MB) was used as an organic solution to evaluate the photocatalytic reactivity of the solid and porous TiO2 NPs fabricated in this study. The light absorbance of the MB solution was evaluated using a UV-Vis spectroscopy. UV and visible absorption spectra were recorded using a UV-visible-near IR spectrophotometer (V-570, JASCO). The transmittance signal was collected at a wavelength ranging from 190 to 2500 nm with a resolution of 0.5 nm. The photocatalytic reactivity was examined using a Pyrex photoreactor with a diameter of 25 cm and an effective volume of 1 L, which was irradiated by a UV lamp (6 W, 320-400 nm) under inner irradiation conditions. For the measurements, the TiO2 NPs (200 mg) were dispersed in a mixed solution of water (960 ml) and MB (40 ml). The resulting solution was magnetically stirred throughout the experiment to homogeneously disperse the TiO2 NPs. The UV irradiation experiments were performed in a dark room to minimize the decrease of MB concentration by unexpected indoor light absorption. After a specific UV irradiation duration, 5 ml of the TiO2 NP-dispersed MB aqueous solution was sampled at regular intervals. Each sample was filtered using a 0.2 µm syringe (polytetrafluoethylene, SH13P020N) to obtain a pure solution (without TiO₂) in order to measure the MB concentration.

3. Results and discussion

Thermogravimetric analysis (TGA) was carried out to determine the thermal removal temperature of the Brij-58 templates from the TiO₂/ Brij-58 composite. The TGA results show the weight loss of the samples as a function of the temperature (Fig. 2). The initial weight loss (at less than 150 °C) was triggered by the evaporation of water and organic residues. Then, a steep decrease in both TGA curves was observed at 200-550 °C, which was due to the thermal removal of the Brij-58 templates. Above 550 °C, no weight loss was detected in the samples. The mass ratio of TiO2 to Brij-58/TiO2 was estimated to be approxi-0.42 $(M_{TiO2} = 79.866 \text{ g·mol}^{-1};$ $_{58} = 192.266 \,\mathrm{g \, mol}^{-1}$), while the molar ratio of TiO₂ to Brij-58 was 1:0.1. From this calculation, we expected to obtain the remaining TiO₂ content in the Brij-58/TiO₂ mixture with a weight change of about 42% after calcination at 550 °C. This was confirmed by the TGA measurements (Fig. 2). Therefore, the calcination temperature was maintained at 550 °C throughout this study in order to thermally remove the Brij-58 templates.

A series of SEM measurements were performed to observe the size and morphology of the synthesized TiO_2 NPs while varying the Brij-58 surfactant concentrations (Fig. 3). Hydrolysis and condensation reactions of the TiO_2 precursor solution were observed in the aerosolized droplets. Simultaneously, the Brij-58 surfactant molecules supported the pore structures inside the TiO_2 NP-based matrix. The increase in the amount of Brij-58 in the TiO_2 precursor solution gave no significant change in the resulting structures of the TiO_2 NPs fabricated through the aero-sol-gel chemistry process with a subsequent calcination (Fig. 3a–d).

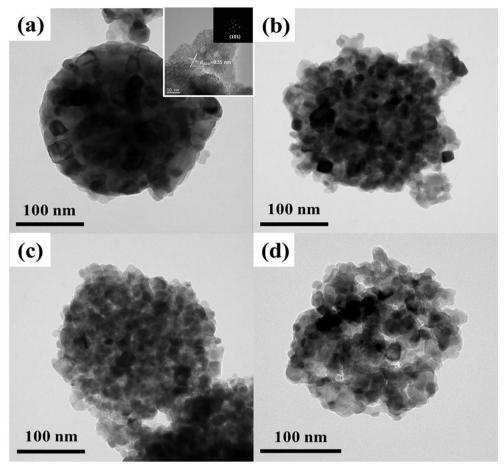
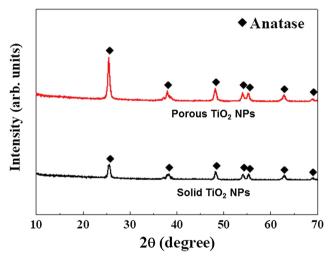
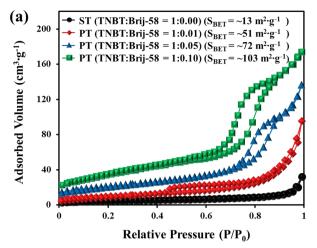
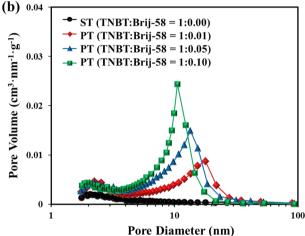


Fig. 4. TEM images of (a) solid TiO_2 NPs (TNBT:Brij-58 = 1:0.00) (The inset is SAED analysis result), and porous TiO_2 NPs: (b) TNBT:Brij-58 = 1:0.01, (c) TNBT:Brij-58 = 1:0.05, (d) TNBT:Brij-58 = 1:0.10.




Fig. 5. XRD pattern measurements of solid TiO_2 NPs (TNBT:Brij-58 = 1:0.01) and porous TiO_2 NPs (TNBT:Brij-58 = 1:0.01).


The ${\rm TiO_2}$ NPs were found to be commonly spherical with a similar average size of ~ 180 nm (Fig. 3). This suggests that the addition of the Brij-58 surfactant in the ${\rm TiO_2}$ matrix did not have a significant effect on the overall morphology of the resulting ${\rm TiO_2}$ NPs. Moreover, it was observed that the surface of the ${\rm TiO_2}$ NPs formed without Brij-58 (Fig. 3a) was relatively smooth. In contrast, the porous ${\rm TiO_2}$ NPs formed in the presence of Brij-58 (Fig. 3b–d) were slightly rough. This suggests that the Brij-58 surfactants were dispersed all over the ${\rm TiO_2}$ matrix and

their thermal removal presumably led to the formation of small spaces at the outer surface and inner matrix of TiO_2 .

The formation of porous structures in the TiO2 NPs fabricated in the present study was corroborated by TEM analysis (Fig. 4). The measurements showed that the small, primary solid TiO2 spheres, formed by the sol-gel process in the aerosolized droplets, were clustered in a large spherical particle due to the fast solvent evaporation (Fig. 4a). As the results of selected area electron diffraction (SAED) analysis shown in the inset of Fig. 4a, the TiO₂ NP formed in this study was anatase phase (101). Also, slight decrease in the electron beam attenuation was observed in the interior of the resulting TiO2 NPs after surfactant removal. This confirmed that the Brij-58 surfactant was present within the interior of the TiO₂ NPs (Fig. 4b-d). It should be noted that we also performed elemental mapping analysis using a scanning TEM for the TiO2 NPs fabricated. The weight percent of Ti, O, and C element was found to be 62.51 wt%, 34.07 wt%, and 3.42 wt%, respectively, indicating that the residue of Brij-58 surfactant was remained in the TiO₂ matrix with negligibly small amount. As the amount of Brij-58 added to the TiO2 matrix increased, the size of the pores in the TiO2 NPs increased. Since the Brij-58 surfactant molecules were arranged into micelles in the TiO2 precursor solution, they must have acted as templates inside the TiO₂ matrix. After these micelles were thermally removed during the calcination process, inner pores were created in the TiO₂ matrix. This suggests that the Brij-58 surfactant-templated aerosol process is an easy and versatile method to control the structure of the TiO2 NPs in terms of porosity.

To examine the phase of TiO_2 particles formed, XRD analysis was performed for the solid and porous TiO_2 NPs fabricated after calcination process at 550 °C. As shown in Fig. 5, strong peaks were observed for a

Fig. 6. (a) Nitrogen adsorption and desorption of solid and porous TiO_2 NPs, (b) pore size distribution of solid and porous TiO_2 NPs at various mixing ratios of TNBT and Brij-58. (ST = solid TiO_2 NPs, PT = porous TiO_2 NPs).

crystal structure with (101), (004), (200), and (105) in all samples, suggesting that anatase phase was present. This also corroborates the presence of anatase phase of ${\rm TiO_2}$ detected by using selected area electron diffraction in TEM analysis (Fig. 4a).

The specific surface area and pore volume distribution of the fabricated solid and porous TiO2 NPs were examined using N2 adsorption and desorption isotherms (Fig. 6). A hysteresis loop was observed with a stepwise adsorption and desorption branch at a wide pressure range (P/P₀) (Fig. 6a). Solid TiO₂ NPs were found to have a specific surface area (SSA) of only $\sim 13 \text{ m}^2 \cdot \text{g}^{-1}$. In contrast, the presence of Brij-58 in the mixture increased the SSA of the NPS. For porous TiO2 NPs fabricated in the presence of a small amount of surfactant, TNBT:Brij-58 = 1:0.01, the SSA was found to increase to $\sim 51 \text{ m}^2 \cdot \text{g}^{-1}$. When the amount of Brij-58 in the TiO2 matrix was increased, TNBT:Brij-58 = 1:0.05, the resulting SSA of the porous TiO2 NPs also increased $(\sim 72 \,\mathrm{m^2 \cdot g^{-1}})$. Similarly, the further rise in surfactant concentration, TNBT:Brij-58 = 1:0.10, led to an SSA of $\sim 103 \,\mathrm{m^2 \cdot g^{-1}}$. The fact that the pore size distribution ranged from several nm to several tens of nm suggested that mesoporous TiO2 NPs were successfully formed through this approach. Moreover, the mesoporous TiO2 NPs were precisely controlled by using the Brij-58 surfactant as a template in the aero-solgel process. Investigation of the pore size distribution showed that the solid TiO₂ NPs have a pore volume of $\sim 0.049 \, \text{cm}^3 \cdot \text{nm}^{-1} \cdot \text{g}^{-1}$ (Fig. 6b). In contrast, the pore volume of the porous TiO2 NPs was larger $(\sim 0.181 \text{ cm}^3 \cdot \text{nm}^{-1} \cdot \text{g}^{-1} \text{ for TNBT:Brij-58} = 1:0.01)$ and showed an

increase with the rise in surfactant concentration ($\sim 0.226~\text{cm}^3 \cdot \text{mm}^{-1} \cdot \text{g}^{-1}$ for TNBT:Brij-58 = 1:0.05, and $\sim 0.254~\text{cm}^3 \cdot \text{mm}^{-1} \cdot \text{g}^{-1}$ for TNBT:Brij-58 = 1:0.10). This suggests that the addition of more Brij-58 in the TiO $_2$ matrix could effectively lead to larger pore structures after thermal removal of the surfactant.

In order to examine the effect of porosity of TiO2 NPs on the MB removal efficiency, a series of experiments for decoloring MB solution under UV light were performed. The MB was degraded by solid and porous TiO2 NPs that were fabricated in the presence of different concentrations of Brii-58 surfactant. The solid and porous TiO2 NPs were added to a MB solution in order to test their photocatalytic reactivity under UV light irradiation. The relative concentration of MB was measured as a function of the UV light exposure duration (Fig. 7a-d). As the UV light exposure duration increased, the dark blue color of original MB solution was turned into light blue (Fig. 7e). The photodegradation of MB using solid and porous TiO2 NPs was investigated by displaying the linear plots of $ln(C/C_0)$ as a function of the UV irradiation duration (Fig. 7f), where C₀ and C represent MB concentration at initial and any time, respectively. All plots were presented as first-order reaction kinetics, and the reaction rate constant (k) was calculated from the rate equation $ln(C/C_0) = kt$, which can be used as an indication of the photocatalytic reactivity [38]. The values of k obtained from the slopes of the linear curves were found to be $\sim 0.164 \, h^{-1}$ for solid TiO₂ (TNBT:Brij-58 = 1:0.00), $\sim 0.206 \, h^{-1}$ for porous TiO₂ with TNBT:Brij-58 = 1:0.01, $\sim 0.219 \,\mathrm{h^{-1}}$ for porous TiO_2 with TNBT:Brij-58 = 1:0.05, and $\sim 0.242 \, h^{-1}$ for porous TiO₂ with TNBT:Brij-58 = 1:0.10. This suggests that the highly porous TiO2 NPs were much more effective in photodegrading MB and had a faster reaction rate. The chemical decomposition of the MB solution occurred through Eq. (1).

$$Dye + OH \rightarrow CO_2 + H_2O$$
 (1)

In other words, the chemical decomposition through the formation of hydroxyl radicals caused weakening of the color. Therefore, the ${\rm TiO_2}$ photocatalysts accelerated the decomposition of MB through a photochemical process during the UV irradiation. The low reactivity of solid ${\rm TiO_2}$ was attributed to the poor adsorption of MB molecules due to their low specific surface area. Conversely, the MB removal efficiency was significantly increased when the porosity of the ${\rm TiO_2}$ NPs was higher. This suggests that the chemical decomposition was accelerated by porous ${\rm TiO_2}$ because of the large amount of radical oxidation that was formed by the increased pore structures in the ${\rm TiO_2}$ matrix. Therefore, the removal efficiency of various aquatic pollutants can be potentially improved by employing highly porous ${\rm TiO_2}$ NPs with excellent photocatalytic reactivity.

4. Conclusions

Herein, we demonstrated the formation of solid and porous TiO_2 NPs using Brij-58 surfactant-templated aerosol process and a subsequent calcination. The Brij-58 surfactant was employed as a templating medium to support the pore structures inside the TiO_2 matrix. After tuning the porosity of the TiO_2 NPs by varying the amount of Brij-58 surfactant in the solution, the ability of the mesoporous TiO_2 NPs to decompose MB solution under UV light was systematically investigated. It was found that highly porous TiO_2 NPs with larger specific surface area and pore volume exhibit faster photocatalytic degradation rates. This suggests that the surfactant-templated aerosol process with subsequent calcination employed in this study is a relatively easy and versatile method to generate highly porous TiO_2 NPs. Moreover, the NPs fabricated following this strategy are more effective and highly promising photocatalysts than normal solid TiO_2 NPs.

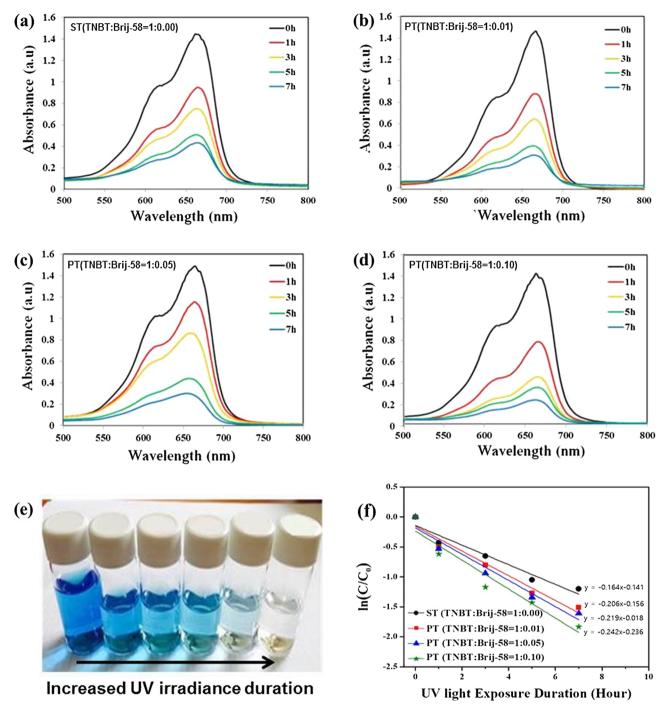


Fig. 7. Evolution of light absorbance of MB solution decomposed by (a) solid TiO_2 NPs and porous TiO_2 NPs: (b) TNBT:Brij-58 = 1:0.01, (c) TNBT:Brij-58 = 1:0.05, (d) TNBT:Brij-58 = 1:0.10 under various UV light exposure duration. (e) The color change of MB solution decomposed by solid TiO_2 NPs under UV irradiance. (f) First-order reaction kinetics plots for the photodegradation of MB solution by solid and porous TiO_2 NPs in terms of $In(C/C_0)$ as a function of UV light exposure duration. (ST = solid TiO_2 NPs, PT = porous TiO_2 NPs).

5. Notes

The authors declare no competing financial interest.

Acknowledgment

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (Ministry of Science and ICT, MSIT) (No. 2015R1A2A1A15054036 & 2013M3C1A9055407).

References

- A.L. Bolden, C.F. Kwiatkowski, T. Colborn, Environ. Sci. Technol. 49 (2015) 5261–5276.
- [2] J. Mo, Y. Zhang, Q. Xu, J.J. Lamson, R. Zhao, Atmos. Environ. 43 (2009) 2229–2246.
- [3] X. Zhou, J. Wu, Q. Li, Y. Qi, Z. Ji, P. He, X. Qi, P. Sheng, Q. Li, J. Ren, Chem. Eng. J. 330 (2017) 294–308.
- [4] J. Hirayama, Y. Kamiya, ACS Catal. 4 (2014) 2207-2215.
- [5] A.L. Linsebigler, G. Lu, J.T. Yates Jr, Chem. Rev. 95 (1995) 735-758.
- [6] H. Chen, C.E. Nanayakkara, V.H. Grassian, Chem. Rev. 112 (2012) 5919-5948.
- [7] J. Zhang, X. Wang, J. Wang, J. Wang, Z. Ji, Chem. Phys. Lett. 643 (2016) 53-60.
- [8] Z.-C. Wu, Y. Lu, Y. Wang, Y.-Z. Li, L. He, X. Cheng, W. Geng, J. Ying, G.-G. Chang,

- Chem. Phys. Lett. 708 (2018) 32-36.
- [9] S. Costacurta, G.D. Maso, R. Gallo, M. Guglielmi, G. Brusatin, P. Falcaro, ACS Appl. Mater. Interfaces 2 (2010) 1294–1298.
- [10] S.H. Lee, M. Kang, S.M. Cho, G.Y. Han, B.W. Kim, K.J. Yoon, C.H.J. Chung, Photochem. Photobio. A 146 (2001) 121–128.
- [11] W. Fang, F. Dappozze, C. Guillard, Y. Zhou, M. Xing, S. Mishra, S. Daniele, J. Zhang, J. Phys. Chem. C 121 (2017) 17068–17076.
- [12] W.H. Ryu, C.J. Park, H.S. Kwon, J. Nanosci. Nanotechnol. 8 (2008) 5467-5470.
- [13] Z. Ding, X. Hu, G.Q. Lu, P.L. Yue, P.F. Greenfield, Langmuir 16 (2000) 6216-6222.
- [14] F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, Appl. Catal. B: Environ. 230 (2018) 194-202.
- [15] F. Xu, L. Zhang, B. Cheng, J. Yu, ACS Sustain. Chem. Eng. 6 (2018) 12291-12298.
- [16] A. Meng, S. Wu, B. Cheng, J. Yu, J.J. Xu, Mater. Chem. A 6 (2018) 4729–4736.
- [17] A.V. Murugan, V. Samuel, V. Ravi, Mater. Lett. 60 (2006) 479-480.
- [18] S. Liu, H. Zhang, M.T. Swihart, Nanotechnology 20 (2009) 235603.
- [19] M.D. Blešić, Z.V. Šaponjić, J.M. Nedeljković, D.P. Uskoković, Mater. Lett. 54 (2002) 298–302.
- [20] M. Ibadurrohman, K. Hellgardt, ACS Appl. Mater. Interfaces. 7 (2015) 9088–9097.
- [21] S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Langmuir 20 (2004) 2523–2526.
- [22] S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Chem. Mater. 14 (2002) 2889-2899.
- [23] T.J. Liu, Q. Wang, P. Jiang, RSC Adv. 3 (2013) 12662-12670.
- [24] C.K. Tsung, J. Fan, N. Zheng, Q. Shi, A.J. Forman, J. Wang, G.D. Stucky, Angew. Chem. Int. Ed. 47 (45) (2008) 8682–8686.
- [25] W. Yue, C. Randorn, P.S. Attidekou, Z. Su, J.T. Irvine, W. Zhou, Adv. Funct. Mater.

- 19 (17) (2009) 2826-2833.
- [26] M.F. Atitar, A.A. Ismail, S.A. Al-Sayari, D. Bahnemann, D. Afanasev, A.V. Emeline, Chem. Eng. J. 264 (2015) 417–424.
- [27] S. Illa, R. Boppella, S.V. Manorama, P. Basak, J. Phys. Chem. C. 120 (32) (2016) 18028–18038.
- [28] J.H. Pan, Z. Cai, Y. Yu, X.S. Zhao, J. Mater. Chem. 21 (2001) 11430-11438.
- [29] Y. Zhang, G. Li, Y. Wu, Y. Luo, L. Zhang, J. Phys. Chem. B 109 (2005) 5478–5481.
- [30] Z. Xing, W. Zhou, F. Du, L. Zhang, Z. Li, H. Zhang, W. Li, ACS Appl. Mater. Interfaces 6 (2014) 16653–16660.
- [31] F. Di Fonzo, C.S. Casari, V. Russo, M.F. Brunella, A.L. Bassi, C.E. Bottani, Nanotechnology 20 (2008) 015604.
- [32] Z.R. Ismagilov, L.T. Tsikoza, N.V.E. Shikina, V.F. Zarytova, V.V. Zinoviev, S.N. Zagrebelnyi, Russ. Chem. Rev. 78 (2009) 873.
- [33] Y. Ou, J. Lin, S. Fang, D. Liao, Catal. Commun. 8 (2007) 936-940.
- [34] E.O. Oseghe, S. Maddila, P.G. Ndungu, S.B. Jonnalagadda, Appl. Catal. B: Environ. 176 (2015) 288–297.
- [35] P.S. Shinde, M.A. Mahadik, S.Y. Lee, J. Ryu, S.H. Choi, J.S. Jang, Chem. Eng. J. 320 (2017) 81–92.
- [36] G. Calleja, D.P. Serrano, R. Sanz, P. Pizarro, A. García, Ind. Eng. Chem. Res. 43 (2004) 2485–2492.
- [37] E.M. Samsudin, S.B.A. Hamid, J.C. Juan, W.J. Basirun, Appl. Surf. Sci. 355 (2015) 959–968.
- [38] I.K. Konstantinou, T.A. Albanis, Appl. Catal. B: Environ. 49 (2004) 1-14.